Run 8 FCAL Calibrations Overview

Andy Glenn Jan 30, 2009

Primer

- North + South FCAL
- 90 channels in each arm (10 high x9 wide)
- High and Low gain ADCs (HG and LG)
 - only zero suppressed low gain available for physics data
 - High gain ~ 16x Low gain
- LED pulsers new for Run 8
- Calibration goal find GeV/LG for each channel
 - removing channel by channel differences is more important than absolute energy scale

Method Summary

An odd dimensional analysis

$$\frac{GeV}{ADC_{DATA\ V}^{LG}} = \frac{GeV}{ADC_{1300V}^{HG}} \times \frac{ADC_{1300V}}{ADC_{DATA\ V}} \times \frac{ADC_{HG}}{ADC_{HG}}$$
Cosmics Pulser HV scan HG Vs LG fit HILO factor

BUT

- Cosmics have good signal in LG ADC for some channels. Could avoid (at least one) HILOW factor.
- Significant fraction of channels have pulser signal at 1300V and DATA V. Some in same ADC. Avoid fit.
- Could add <HG ADC> to scan fit (when <LG> < 50).
- Is one best off to do method that has fewest factors for each channel, or most generic method for all channels.

Calibration Step I

- Use self triggered cosmics, assume peak of ADC distribution is know energy value
 - Issue: cosmic data taken at 1300V for good signal.
 This is much higher than data taking voltage,
 which varies greatly from inner to outer columns.

Result: GeV/(HG @ 1300V)

Calibration Step II

 Use LED pulser data to convert from 1300V to data taking voltage. Result: GeV/(HG @ Data Voltages)

Step II alternative

 Plot mean LG vs voltage and fit with power law. This also allows extrapolation to voltages where there is poor response.

Step III

 Convert to LG. Result: LG/HG ratio or HILO factor. Fit to line.

